Global Existence and Boundedness of a Two-Competing-Species Chemotaxis Model

Liangying Miao

College of Mathematics and statistics, Qinghai Nationalities University, Xining 810007, P. R. China.

Author’s contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/ARJOM/2019/v13i230103

Editor(s):
(1) Dr. Sheng Zhang, School of Mathematics and Physics, Bohai University, China.

Reviewers:
(1) Abdullah Sonmezoglu, Bozok University, Turkey.
(2) Yahaya Shagaiya Daniel, Kaduna State University, Nigeria.
(3) Aliyu Bhar Kisabo, Nigeria.

Complete Peer review History: http://www.sdiarticle3.com/review-history/47937

Received: 30 December 2018
Accepted: 12 March 2019

Original Research Article

Abstract

In this paper, we consider the following fully parabolic two-competing-species chemotaxis model

\[
\begin{align*}
\begin{cases}
 u_{1t} &= \Delta u_1 - \chi \nabla \cdot (u_1 \nabla v_1) + \mu_1 u_1 (1 - u_1 - e_1 u_2), & x \in \Omega, \ t > 0, \\
 v_{1t} &= \Delta v_1 + u_1 - v_1, & x \in \Omega, \ t > 0, \\
 u_{2t} &= \Delta u_2 - \xi \nabla \cdot (u_2 \nabla v_2) + \mu_2 u_2 (1 - e_2 u_1 - u_2), & x \in \Omega, \ t > 0, \\
 v_{2t} &= \Delta v_2 + u_2 - v_2, & x \in \Omega, \ t > 0,
\end{cases}
\end{align*}
\]

under homogeneous Neumann boundary conditions, where \(\Omega \subset \mathbb{R}^n \ (n \geq 3) \) is a convex bounded domain with smooth boundary. Relying on a comparison principle, we show that the problem possesses a unique global bounded solution if \(\mu_1 \) and \(\mu_2 \) are large enough.

Keywords: Two-competing-species chemotaxis model; global existence; boundedness.

2010 Mathematics Subject Classification: 35K35; 35K45; 92C17.

*Corresponding author: E-mail: miaoliangying@qhmu.edu.cn
1 Introduction

In this paper, we consider the following two-competing-species chemotaxis model with two different chemicals

\[
\begin{aligned}
\begin{cases}
\quad u_{1t} = \Delta u_{1} - \chi \nabla \cdot (u_{1} \nabla v_{1}) + \mu_{1} u_{1} (1 - u_{1} - e_{1} u_{2}), & x \in \Omega, \ t > 0, \\
\quad u_{2t} = \Delta u_{2} - \xi \nabla \cdot (u_{2} \nabla v_{2}) + \mu_{2} u_{2} (1 - e_{2} u_{1} - u_{2}), & x \in \Omega, \ t > 0, \\
\quad v_{1t} = \Delta v_{1} + u_{1} - v_{1}, & x \in \Omega, \ t > 0, \\
\quad v_{2t} = \Delta v_{2} + u_{2} - v_{2}, & x \in \Omega, \ t > 0, \\
\quad \frac{\partial u_{1}}{\partial \nu} = \frac{\partial u_{2}}{\partial \nu} = \frac{\partial v_{1}}{\partial \nu} = \frac{\partial v_{2}}{\partial \nu} = 0, & x \in \partial \Omega, \ t > 0, \\
\quad u_{1}(x, 0) = u_{10}(x), \ u_{2}(x, 0) = u_{20}(x), \ v_{1}(x, 0) = v_{10}(x), \ v_{2}(x, 0) = v_{20}(x), & x \in \Omega,
\end{cases}
\end{aligned}
\]

(1.1)

where \(\Omega \subset \mathbb{R}^{n} \ (n \geq 3) \) is a convex bounded domain with smooth boundary \(\partial \Omega \). \(\frac{\partial}{\partial \nu} \) denotes the differentiation with respect to the outward normal derivative on \(\partial \Omega \). \(u_{1}(x, t) \) and \(u_{2}(x, t) \) denote the densities of two competitive populations, whereas \(v_{1}(x, t) \) and \(v_{2}(x, t) \) represent the concentration of the chemicals produced by \(u_{1} \) and \(u_{2} \), respectively. The chemotactic sensitivities \(\chi, \xi \), the growth rates of population \(\mu_{1}, \mu_{2} \) and the competitive coefficients \(e_{1}, \ e_{2} \) are all positive constants. The initial data \(u_{10}, u_{20}, v_{10}, v_{20} \) are given functions satisfying

\[
\begin{aligned}
\begin{cases}
\quad u_{10} \in C^{0}(\Omega) \quad \text{with} \ u_{10} \geq 0 \ \text{in} \ \Omega, \\
\quad u_{20} \in C^{0}(\Omega) \quad \text{with} \ u_{20} \geq 0 \ \text{in} \ \Omega, \\
\quad v_{10} \in W^{1,q}(\Omega) \quad \text{for some} \ q > n, \ \text{with} \ v_{10} \geq 0 \ \text{in} \ \Omega, \\
\quad v_{20} \in W^{1,q}(\Omega) \quad \text{for some} \ q > n, \ \text{with} \ v_{20} \geq 0 \ \text{in} \ \Omega.
\end{cases}
\end{aligned}
\]

(1.2)

For model (1.1), namely, multi-species and multi-stimuli chemotaxis model, only few results were studied. In the two-dimensional case, Black in [1] proved the corresponding Neumann problem possesses a unique global bounded solution for all positive parameters, it is also obtained that whenever \(n \geq 1 \), if \(e_{1}, \ e_{2} \in (0, 1) \) any global bounded solution converges to the unique positive spatially homogeneous equilibrium in the large time for sufficiently large \(\frac{\mu_{1}}{\chi} \) and \(\frac{\mu_{2}}{\xi} \), and if \(e_{1} \geq 1 > e_{2} > 0 \) the solution \(u_{1}(t) \to 0, \ u_{2}(t) \to 1, \ v_{1}(t) \to 1 \) and \(v_{2}(t) \to 0 \) uniformly with respect to \(x \in \Omega \) as \(t \to \infty \) for large enough \(\frac{\mu_{1}}{\chi} \). In the high-dimensional case, relying on the maximal Sobolev regularity and semigroup technique, Zheng et al. in [2] proved that the system has a unique globally bounded classical solution and there exists \(\theta_{0} > 0 \) such that \(\frac{\mu_{1}}{n_{1}} < \theta_{0} \) and \(\frac{\mu_{2}}{n_{2}} < \theta_{0} \). However, to the best of our knowledge, in the high-dimensional convex domain, there are few papers concerned with the global existence of solution of (1.1).

Motivated on these studies, in this paper, we shall investigate the global existence and boundedness of solution to system (1.1) in a high-dimensional convex bounded domain.

The organization of the remaining part of the paper is as follows. Section 2 gives our main result in this paper. Section 3 is devoted to prove the global existence and boundedness of the classical solution of (1.1). The last section is a brief conclusion.

2 Main Result

Our main result in this paper is stated as follow.

Theorem 1. Let \(\Omega \subset \mathbb{R}^{n} \ (n \geq 3) \) be a convex bounded domain with smooth boundary. Let \(\chi, \xi, \mu_{1}, \mu_{2}, e_{1} \) and \(e_{2} \) be some positive constants. Suppose that \(\chi, \xi, \mu_{1}, \mu_{2} \) satisfy

\[
\frac{\mu_{1}}{\chi} > \frac{n}{4} \quad \text{and} \quad \frac{\mu_{2}}{\xi} > \frac{n}{4}.
\]

(2.1)
Then for any choice of \((u_{10}, u_{20}, v_{10}, v_{20})\) fulfilling (1.2), problem (1.1) possesses a unique global classical solution \((u_1, u_2, v_1, v_2)\) which is uniformly bounded in \(\Omega \times (0, \infty)\).

Remark 1. We emphasize that Theorem 1 also holds for the spatial dimension \(n \leq 2\).

Remark 2. As compared with the previous conditions Theorem 1.2 of [2], our conditions add the assumption that \(\Omega\) is a convex region, but they are more natural, more symmetric, and only relate to the spatial dimension \(n\).

3 Proof of Theorem 1

To begin with, let us state a result on local existence and uniqueness of classical solutions.

Lemma 1. Let \(\Omega \subset \mathbb{R}^n\) \((n \geq 1)\) be a bounded domain with smooth boundary. Let \(\chi, \xi, \mu_1, \mu_2, \varepsilon_1\) and \(\varepsilon_2\) be positive constants and let \(q > \max\{2, n\}\). Then, for each nonnegative \(u_{10} \in C^0(\Omega)\), \(u_{20} \in C^0(\Omega)\), \(v_{10} \in W^{1,q}(\Omega)\) and \(v_{20} \in W^{1,q}(\Omega)\), there exists \(T_{\max} \in (0, \infty]\) and a uniquely determined triple \((u_1, u_2, v_1, v_2)\) of functions

\[
\begin{align*}
 u_1 &\in C^0(\Omega \times [0, T_{\max})) \cap C^{2,1}(\Omega \times (0, T_{\max})), \\
 u_2 &\in C^0(\Omega \times [0, T_{\max})) \cap C^{2,1}(\Omega \times (0, T_{\max})), \\
 v_1 &\in C^0(\Omega \times [0, T_{\max})) \cap C^{2,1}(\Omega \times (0, T_{\max})) \cap L^\infty_{\text{loc}}([0, T_{\max}); W^{1,q}(\Omega)), \\
 v_2 &\in C^0(\Omega \times [0, T_{\max})) \cap C^{2,1}(\Omega \times (0, T_{\max})) \cap L^\infty_{\text{loc}}([0, T_{\max}); W^{1,q}(\Omega)),
\end{align*}
\]

which solves (1.1) classically in \(\Omega \times (0, T_{\max})\), and if \(T_{\max} < \infty\), then

\[
\limsup_{t \nearrow T_{\max}} \|u_1(\cdot, t)\|_{L^\infty(\Omega)} + \|u_2(\cdot, t)\|_{L^\infty(\Omega)} + \|v_1(\cdot, t)\|_{W^{1,q}(\Omega)} + \|v_2(\cdot, t)\|_{W^{1,q}(\Omega)} = \infty.
\]

Proof. This can be derived by standard arguments involving Banach’s fixed point theorem and the parabolic regularity theory [3, Lemma 1.1].

Next we consider global bounded solution of (1.1) in a convex domain under suitable large assumption on the quotients \(\frac{\mu_1}{\chi}\) and \(\frac{\mu_2}{\xi}\). The proof is based on comparison argument similar to [3-5].

Lemma 2. Let \(\Omega \subset \mathbb{R}^n\) \((n \geq 3)\) be a bounded convex domain. Then, under the same assumptions in Theorem 1, the solution of (1.1) satisfies

\[
\|u_1(\cdot, t)\|_{L^\infty(\Omega)} + \|u_2(\cdot, t)\|_{L^\infty(\Omega)} \leq C \quad \text{for all} \quad t \in (0, T_{\max})
\] \hspace{1cm} (3.1)

with some constant \(C > 0\).

Proof. We consider the auxiliary function

\[
J(x, t) := \frac{1}{\chi} u_1(x, t) + \frac{1}{\xi} u_2(x, t) + \frac{1}{2} |\nabla v_1(x, t)|^2 + \frac{1}{2} |\nabla v_2(x, t)|^2
\]

for all \(x \in \Omega\) and \(t \in (0, T_{\max})\). Using (1.1) and the pointwise identity \(\nabla v \cdot \nabla v = \frac{1}{2} |\nabla v|^2 - |D^2v|^2\), a straightforward calculation show the equation for \(J\):

\[
J_t - \Delta J + 2J = \frac{2}{\chi} u_1 + \frac{2}{\xi} u_2 - u_1 \Delta v_1 - u_2 \Delta v_2 - |D^2v_1|^2 - |D^2v_2|^2
\]

\[
+ \frac{\mu_1}{\chi} u_1 - \frac{\mu_2}{\xi} u_2 - \frac{\mu_1 \varepsilon_1}{\chi} u_1 u_2 + \frac{\mu_2 \varepsilon_2}{\xi} u_1 u_2 - \frac{\mu_1 \varepsilon_1}{\chi} u_1 u_2 - \frac{\mu_2 \varepsilon_2}{\xi} u_1 u_2 - \frac{\mu_1 \varepsilon_1}{\chi} u_1 u_2 - \frac{\mu_2 \varepsilon_2}{\xi} u_1 u_2
\] \hspace{1cm} (3.2)

in \(\Omega \times (0, T_{\max})\). From Young’s inequality and the inequality \(|\Delta v|^2 \leq n|D^2v|^2\), we can estimate

\[
-u_1 \Delta v_1 \leq \frac{|\Delta v_1|^2}{n} + \frac{n}{4} u_1^2 \leq |D^2v_1|^2 + \frac{n}{4} u_1^2 \quad \text{in} \quad \Omega \times (0, T_{\max})
\]
and
\[-u_2 \Delta v_2 \leq \frac{1}{n} |\Delta v_2|^2 + \frac{n}{4} u_2^2 - \frac{n}{4} v_2 \leq |D^2 v_2|^2 + \frac{n}{4} u_2^2 \text{ in } \Omega \times (0, T_{\max}).\]

Combining these with (3.2), (2.1) and Young’s inequality, we infer that
\[J_t - \Delta J + 2J \leq -\left(\frac{\mu_1}{\chi} - \frac{n}{4}\right)u_1 + \frac{\mu_1}{\chi} (2 + \mu_1)u_1 - \frac{\mu_2}{\xi} \left(\frac{n}{4}\right)u_2^2 + \frac{1}{\xi} (2 + \mu_2)u_2 \]
\[\leq \frac{(2 + \mu_1)^2}{(4\mu_1 - n\chi)} + \frac{(2 + \mu_2)^2}{(4\mu_2 - n\xi)} \text{ in } \Omega \times (0, T_{\max}).\]

Relying on the obvious property of functions fulfilling a homogenous Neumann boundary condition on convex domains \(\Omega\) we note that
\[\frac{\partial |\nabla v|}{\partial v} \leq 0 \text{ on } \partial \Omega \text{ by } [6, \text{Lemma } 3.2].\]

Then
\[\frac{\partial J}{\partial v} = \frac{1}{\chi} \frac{\partial u_1}{\partial v} + \frac{1}{\xi} \frac{\partial u_2}{\partial v} + \frac{1}{2} \frac{\partial |\nabla v_1|^2}{\partial v} + \frac{1}{2} \frac{\partial |\nabla v_2|^2}{\partial v} \leq 0\]
for all \(x \in \partial \Omega\) and \(t \in (0, T_{\max})\). Let \(y(t) \in C^1([0, \infty))\) denote the solution of
\[
\begin{cases}
 y'(t) + y(t) = \frac{(2 + \mu_1)^2}{(4\mu_1 - n\chi)} + \frac{(2 + \mu_2)^2}{(4\mu_2 - n\xi)} \text{ for all } t \in (0, \infty), \\
 y(0) = c_1,
\end{cases}
\]
where \(c_1 := \frac{1}{\chi} ||u_{10}||_{L^\infty(\Omega)} + \frac{1}{\xi} ||u_{20}||_{L^\infty(\Omega)} + \frac{1}{\chi} ||v_{10}||_{L^\infty(\Omega)} + \frac{1}{\xi} ||v_{20}||_{L^\infty(\Omega)}\). Then, explicitly solving this initial-value problem, we conclude that
\[y(t) \rightarrow \frac{(2 + \mu_1)^2}{(4\mu_1 - n\chi)} + \frac{(2 + \mu_2)^2}{(4\mu_2 - n\xi)} \text{ as } t \rightarrow \infty.\]

On the other hand, by the comparison principle, we have
\[J(x, t) \leq y(t) \quad \text{for all } x \in \Omega \text{ and } t \in (0, T_{\max}),\]
and this clearly proves the lemma. \(\square\)

We are in the position to prove Theorem 1.

Proof of Theorem 1. Because \(v_i\) solves the following parabolic equation
\[
\begin{align*}
 v_i & = \Delta v_i + u_i - v_i, \quad x \in \Omega, \ t > 0, \ i = 1, 2, \\
 \frac{\partial v_i}{\partial v} & = 0, \quad x \in \partial \Omega, \ t > 0, \ i = 1, 2, \\
 v_i(x, 0) & = v_{i0}(x), \quad x \in \Omega, \ i = 1, 2,
\end{align*}
\]
by (3.1) and the standard parabolic regularity theory [7, Lemma 4.1] or [8, Lemma 1], we see that
\[||v_i(\cdot, t)||_{W^{1, \infty}} \leq C \quad \text{for all } t \in (0, T_{\max}), \ i = 1, 2.\]
This together with Lemma 2 proves Theorem 1 by Lemma 1. \(\square\)

4 Conclusion
In this paper, we investigate a two-competing-species chemotaxis model with two different chemicals. We establish the existence of a unique global bounded classical solution of the problem (1.1) under the assumption that both \(\frac{\mu_1}{\chi} > \frac{n}{4}\) and \(\frac{\mu_2}{\xi} > \frac{n}{4}\).
Acknowledgements

This work was supported by Qinghai Nature Science Foundation (Nos. 2017-ZJ-908, 2018-ZJ-911) and Qinghai Nationalities University (Nos. 2018XJQ01, 2019XJQ05).

Competing Interests

Author has declared that no competing interests exist.

References

©2019 Miao; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
http://www.sdiarticle3.com/review-history/47937