Pullback Absorbing Set for the Stochastic Lattice Selkov Equations

Li Hongyan\(^1\)*

\(^1\)College of Management, Shanghai University of Engineering Science, Shanghai 201620, China.

Author's contribution

The sole author designed, analyzed, interpreted and prepared the manuscript.

Article Information

DOI: 10.9734/ARJOM/2019/v14i130116

Editor(s):

(1) Dr. Radoslaw Jedynak, Department of Computer Science and Mathematics, Kazimierz Pulaski University of Technology and Humanities, Poland.

Reviewers:

(1) Olumide Adesina, Olabisi Onabanjo University, Nigeria.
(2) Joshua Otonritse Okor, Landmark University, Nigeria.
(3) Abdullah Sonmezoglu, Yozgat Bozok University, Turkey.
(4) Sie Long Kek, Universiti Tun Hussein Onn Malaysia, Malaysia.

Complete Peer review History: http://www.sdiarticle3.com/review-history/48970

Received: 15 March 2019
Accepted: 21 May 2019

Original Research Article

Published: 29 May 2019

Abstract

Aims/ Objectives: To prove the existence of a pullback Absorbing set.
Study Design: Ornstein-Uhlenbeck process.
Place and Duration of Study: College of Management, Shanghai University of Engineering Science.
Methodology: A transformation of addition involved with an Ornstein-Uhlenbeck process is used.
Results: In this paper, pullback absorbing property for the stochastic reversible Selkov system in an infinite lattice with additive noises is proved.

Keywords: Pullback absorbing set; additive noise; Selkov system.
2010 Mathematics Subject Classification: 34F05

*Corresponding author: E-mail: hongyanlishu@163.com;
1 Introduction

In this paper, we consider the stochastic lattice Selkov system with the cubic nonlinearity and additive white noises on an infinite lattice as follows:

\[
\begin{align*}
 du_i &= [d_1(u_{i+1} - 2u_i + u_{i-1}) - a_1u_i + b_1u_i^2v_i - b_2u_i^3 + f_1]dt + \alpha_i dw_i, \quad i \in \mathbb{Z}, \quad t > 0, \\
 dv_i &= [d_2(v_{i+1} - 2v_i + v_{i-1}) - a_2v_i - b_1u_i^2v_i + b_2u_i^3 + f_2]dt + \alpha_i dw_i, \quad i \in \mathbb{Z}, \quad t > 0,
\end{align*}
\]

with initial conditions

\[
u_i(0) = u_{i,0}, \quad v_i(0) = v_{i,0}, \quad i \in \mathbb{Z},
\]

where \(\mathbb{Z} \) denotes the integer set, \(u = (u_i)_{i \in \mathbb{Z}} \in \ell^2, \; v = (v_i)_{i \in \mathbb{Z}} \in \ell^2, \; d_1, \; d_2, \; a_1, \; a_2, \; b_1, \; b_2 \) are positive constants, \(\alpha = (\alpha_i)_{i \in \mathbb{Z}} \in \ell^2 \), \(\{w_i | i \in \mathbb{Z}\} \) is independent Brownian motions.

The reversible Selkov model is derived from a set of the two reversible chemical reactions:

\[
A + 2B \rightleftharpoons 3B, \quad B \rightleftharpoons Q.
\]

The original Selkov model corresponds to the two irreversible reactions, where the product \(Q \) is an inert product. Let \(u_i \) and \(v_i \) respectively the concentrations of the reactants \(B \) and \(A \), Equation (1.1) can be regarded as a Selkov system (see [1]) on \(\mathbb{R} \):

\[
\begin{align*}
 u_i &= d_1 \Delta u - a_1u + b_1u^2v - b_2u^3 + f_1 + \alpha w_i, \\
 v_i &= d_2 \Delta v - a_2v - b_1u^2v + b_2u^3 + f_2 + \alpha w_i,
\end{align*}
\]

Here \(\Delta \) is a Laplacian, \(w_i \) is the white noise to the respective components. We have obtained the random dynamical system, see [2]. Pullback absorbing property is very important to describe the long-time behavior of the equations for the mathematics and physics, especially, to prove the existence of random attractor. Therefore, in this paper, we prove the pullback absorbing property for the Selkov equations (1.1).

1.1 Preliminaries

In this section, we introduce the relevant definitions of absorbing property, which are taken from [3], [4], [5], [6].

Assume \(X \) is a separable Banach space. For random parameters, we choose the standard probability space \((\Omega, \mathcal{F}, P) \) where \(\Omega = \{\omega \in C(\cdot): \omega(0) = 0\}, \mathcal{F} \) is the Borel \(\sigma \)-algebra induced by the compact open topology of \(\Omega \), and \(P \) is the Wiener measure on \((\Omega, \mathcal{F}) \).

Definition 2.1. If \(\theta : \mathbb{R} \times \Omega \rightarrow \Omega \) is \((\mathcal{B}(\mathbb{R}) \times \mathcal{F}, \mathcal{F})\) measurable, and

\[
\theta_0 = I, \; \theta_{s+t} = \theta_s \circ \theta_t, \quad \forall s, t \in \mathbb{R},
\]

then \((\Omega, \mathcal{F}, P, (\theta_t)_{t \in \mathbb{R}})\) is called a metric dynamical system.

Definition 2.2. If a mapping

\[
\psi : \Omega \times X \rightarrow X, \quad (t, \omega, x) \mapsto \psi(t, \omega, x),
\]

is \((\mathcal{B}(\mathbb{R}) \times \mathcal{F} \times \mathcal{B}(X), \mathcal{B}(X))\)-measurable and satisfies, for every \(\omega \in \Omega \),

(i) \(\psi(0, \omega, \cdot) \) is the identity on \(X \);
Then the map ψ is a continuous random dynamical system on X over a metric dynamical system $(\Omega, F, P, (\theta_t)_{t \in \mathbb{R}})$.

Definition 2.3. If for every $\omega \in \Omega$ and a random bounded set $D(\omega) \subset X$,

$$\lim_{t \to \infty} e^{\gamma t} d(D(\theta_{-t}\omega)) = 0$$

for all $\gamma > 0$, where $d(D) = \sup_{x \in D} \|x\|_X$. Then $D(\omega) \subset X$ is called tempered with respect to $(\theta_t)_{t \in \mathbb{R}}$.

Definition 2.4. A random set $J(\omega)$ is called a pullback absorbing set in \mathcal{D}, if for all $D \in \mathcal{D}$ and every $\omega \in \Omega$, there exists a $t_D(\omega) > 0$ such that

$$\psi(t, \theta_{-t}\omega, D(\theta_{-t}\omega)) \subset J(\omega), \forall t \geq t_D(\omega).$$

Where \mathcal{D} is a collection of random sets of X.

2 Ornstein-Uhlenbeck Process

Let $\mathcal{I}^2 = \{u = (u_i)_{i \in \mathbb{Z}}, \ u_i \in \mathbb{R}: \sum_{i \in \mathbb{Z}} |u_i|^2 < +\infty\}$, with the inner product and norm as follows:

$$\langle u, v \rangle = \sum_{i \in \mathbb{Z}} u_i v_i, \quad \|u\|^2 = \langle u, u \rangle, \quad u = (u_i)_{i \in \mathbb{Z}}, \ v = (v_i)_{i \in \mathbb{Z}} \in \mathcal{I}^2.$$

Then $\mathcal{I}^2 = (\mathcal{I}^2, \langle \cdot, \cdot \rangle, \|\cdot\|)$ is a Hilbert space. Set $E = \mathcal{I}^2 \times \mathcal{I}^2$ be the product Hilbert space. In view of the cubic term $\pm u^2 v, \pm u^3$, we need $u \in \mathcal{I}^c, v \in \mathcal{I}^c$ to make (1.1) hold in \mathcal{I}^2.

To convert the stochastic equation to a deterministic one with random parameters, we introduce an Ornstein-Uhlenbeck process (O-U process) (see [7]) in \mathcal{I}^2 on $(\Omega, F, P, (\theta_t)_{t \in \mathbb{R}})$ given by the Wiener process:

$$y(\theta_t \omega) = -(a_1 + a_2) \int_{-\infty}^t e^{(a_1 + a_2) s} (\theta_s \omega)(s) \, ds, \quad t \in \mathbb{R}, \quad \omega \in \Omega,$$

and y solve the following Itô equations respectively:

$$dy + (a_1 + a_2) y \, dt = dw(t), \quad t > 0.$$

There exists a θ_t-invariant set $\Omega' \subset \Omega$ of full P measure such that

1. the mappings $s \to y(\theta_s \omega)$, is continuous for each $\omega \in \Omega$;
2. the random variables $\|y(\theta_t \omega)\|$ is tempered.

To transform (1.3) into pathwise equations, Denote

$$\ddot{u}(t) = u(t) - y(\theta_t \omega), \quad \ddot{v}(t) = v(t) - y(\theta_t \omega).$$

From (1.3), we have

$$\begin{aligned}
\ddot{u}_t &= -d_1 A(\ddot{u} + y(\theta_t \omega)) - a_1 \dot{u} + a_2 y(\theta_t \omega) + b_1 (\ddot{u} + y(\theta_t \omega))^2 (\ddot{v} + y(\theta_t \omega)) \\
&\quad - b_2 (\ddot{u} + y(\theta_t \omega))^3 + f_1 \\

\ddot{v}_t &= -d_2 A(\ddot{v} + y(\theta_t \omega)) - a_2 \dot{v} + a_1 y(\theta_t \omega) - b_1 (\ddot{u} + y(\theta_t \omega))^2 (\ddot{v} + y(\theta_t \omega)) \\
&\quad + b_2 (\ddot{u} + y(\theta_t \omega))^3 + f_2
\end{aligned}$$

(2.1)
with the initial value condition
\[
\tilde{u}(0, \omega, \tilde{u}_0) = \tilde{u}_0(\omega) = u_0 - y(\omega), \quad \tilde{v}(0, \omega, \tilde{v}_0) = \tilde{v}_0(\omega) = v_0 - y(\omega).
\]

3 Pullback Absorbing Property

Lemma 4.1. There exists a \(\theta_t \)-invariant set \(\Omega' \subset \Omega \) of full \(P \) measure and an absorbing random set \(J(\omega), \omega \in \Omega', \forall D \in \mathcal{D} \) and \(\forall \omega \in \Omega' \), there exists \(T_D(\omega) \) such that
\[
\psi(t, \theta_t \omega, D(\theta_t \omega)) \subset J(\omega) \quad \forall t \geq T_D(\omega).
\]

Moreover, \(J \in \mathcal{D} \).

Proof. Taking the inner product to (2.1) with \((\tilde{u}, \tilde{v})^T \) in \(E \), we obtain
\[
\frac{1}{2} \frac{d}{dt} \| \tilde{u} \|^2 = -d_1(A\tilde{u}, \tilde{u}) - d_1(Ay(\theta_t \omega), \tilde{u}) - a_1 \| \tilde{u} \|^2 + b_1((\tilde{u} + y(\theta_t \omega))^2(\tilde{v} + y(\theta_t \omega)), \tilde{u})
\]
\[
- b_2((\tilde{u} + y(\theta_t \omega))^3, \tilde{u}) + (f_1, \tilde{u}) + a_2(y(\theta_t \omega), \tilde{u})
\]
\[
\frac{1}{2} \frac{d}{dt} \| \tilde{v} \|^2 = -d_2(A\tilde{v}, \tilde{v}) - d_2(Ay(\theta_t \omega), \tilde{v}) - a_2 \| \tilde{v} \|^2 - b_1((\tilde{u} + y(\theta_t \omega))^2(\tilde{v} + y(\theta_t \omega)), \tilde{v})
\]
\[
+ b_2((\tilde{u} + y(\theta_t \omega))^3, \tilde{v}) + (f_2, \tilde{v}) + a_1(y(\theta_t \omega), \tilde{v}).
\]

(3.1)

Summing the two equations up, we have
\[
\frac{d}{dt} \| \tilde{u} \|^2 + \| \tilde{v} \|^2 + 2d_1(A\tilde{u}, \tilde{u}) + 2d_2(A\tilde{v}, \tilde{v}) + 2a_1 \| \tilde{u} \|^2 + 2a_2 \| \tilde{v} \|^2
\]
\[
= -2d_1(Ay(\theta_t \omega), \tilde{u}) - 2d_2(Ay(\theta_t \omega), \tilde{v}) + 2(f_1, \tilde{u}) + 2(f_2, \tilde{v}) + 2a_2(y(\theta_t \omega), \tilde{u}) + 2a_1(y(\theta_t \omega), \tilde{v})
\]
\[
+ 2b_1((\tilde{u} + y(\theta_t \omega))^2(\tilde{v} + y(\theta_t \omega)), \tilde{u}) - 2b_1((\tilde{u} + y(\theta_t \omega))^2(\tilde{v} + y(\theta_t \omega)), \tilde{v})
\]
\[
- 2b_2((\tilde{u} + y(\theta_t \omega))^3, \tilde{u}) + 2b_2((\tilde{u} + y(\theta_t \omega))^3, \tilde{v})
\]
\[= -2 \sum_{i=1}^2 \left(b_1 \| \tilde{u} \|^2 + \| \tilde{v} \|^2 + b_2((\tilde{u} + y(\theta_t \omega))^3, \tilde{u}) \right)
\]
(3.2)

Then we have
\[
2b_1((\tilde{u} + y(\theta_t \omega))^2(\tilde{v} + y(\theta_t \omega)), \tilde{u}) - 2b_1((\tilde{u} + y(\theta_t \omega))^2(\tilde{v} + y(\theta_t \omega)), \tilde{v})
\]
\[
- 2b_2((\tilde{u} + y(\theta_t \omega))^3, \tilde{u}) + 2b_2((\tilde{u} + y(\theta_t \omega))^3, \tilde{v})
\]
\[= 2 \max \left(b_1, b_2 \right) \left((\tilde{u} + y(\theta_t \omega))^2(\tilde{v} + y(\theta_t \omega)) - (\tilde{u} - y(\theta_t \omega)), \tilde{u} - \tilde{v} \right)
\]
\[\leq -2 \max \left(b_1, b_2 \right) \left((\tilde{u} + y(\theta_t \omega))^2(\tilde{v} + y(\theta_t \omega)) - (\tilde{u} - y(\theta_t \omega)), \tilde{u} - \tilde{v} \right)
\]
\[= -2 \sum_{i=1}^2 \left(\tilde{u}_i + y_1(\theta_t \omega))^2(\tilde{u}_i - \tilde{v}_i)^2 \right) \leq 0.
\]
(3.3)

By Young’s inequality in [8], we have the following estimate
\[
-2d_1(Ay(\theta_t \omega), \tilde{u}) \leq \frac{a_1}{3} \| \tilde{u} \|^2 + \frac{3d_1^2}{a_1} \| Ay(\theta_t \omega) \|^2,
\]
(3.4)
\[
-2d_2(Ay(\theta_t \omega), \tilde{v}) \leq \frac{a_2}{3} \| \tilde{v} \|^2 + \frac{3d_2^2}{a_2} \| Ay(\theta_t \omega) \|^2,
\]
(3.5)
\[
2a_2(y(\theta_t \omega), \tilde{u}) \leq \frac{a_1}{3} \| \tilde{u} \|^2 + \frac{3a_2^2}{a_1} \| y(\theta_t \omega) \|^2,
\]
(3.6)
\[
2a_1(y(\theta_t \omega), \tilde{v}) \leq \frac{a_2}{3} \| \tilde{v} \|^2 + \frac{3a_1^2}{a_2} \| y(\theta_t \omega) \|^2,
\]
(3.7)
\[
2(f_1, \tilde{u}) \leq \frac{a_1}{3} \| \tilde{u} \|^2 + \frac{3}{a_1} \| f_1 \|^2,
\]
(3.8)
\[
2(f_2, \tilde{v}) \leq \frac{a_2}{3} \| \tilde{v} \|^2 + \frac{3}{a_2} \| f_2 \|^2.
\]
(3.9)
By (3.2)-(4.9), we obtain that
\[
\frac{d}{dt} \left(\|\tilde{u}\|^2 + \|\tilde{v}\|^2 \right) + 2d_1 \langle A\tilde{u}, \tilde{u} \rangle + 2d_2 \langle A\tilde{v}, \tilde{v} \rangle + 2a_1\|\tilde{u}\|^2 + 2a_2\|\tilde{v}\|^2 \\
\leq \frac{a_1}{3} \|\tilde{u}\|^2 + \frac{3d_1^2}{a_1} \|Ay(\theta,\omega)\|^2 + \frac{a_2}{3} \|\tilde{v}\|^2 + \frac{3d_2^2}{a_2} \|Ay(\theta,\omega)\|^2 + \frac{3}{a_1} \|f_1\|^2 + \frac{a_1}{3} \|\tilde{u}\|^2 \\
+ \frac{3}{a_2} \|f_2\|^2 + \frac{a_2}{3} \|\tilde{v}\|^2 + \frac{3a_1^2}{3} \|y(\theta,\omega)\|^2 + \frac{a_1}{3} \|\tilde{u}\|^2 + \frac{3a_2^2}{2} \|y(\theta,\omega)\|^2 + \frac{a_2}{3} \|\tilde{v}\|^2 \\
= a_1\|\tilde{u}\|^2 + \frac{3d_1^2}{a_1} \|Ay(\theta,\omega)\|^2 + a_2\|\tilde{v}\|^2 + \frac{3d_2^2}{a_2} \|Ay(\theta,\omega)\|^2 + \frac{3}{a_1} \|f_1\|^2 \\
+ \frac{3}{a_2} \|f_2\|^2 + \frac{3a_1^2}{a_1} \|y(\theta,\omega)\|^2 + \frac{3a_2^2}{a_2} \|y(\theta,\omega)\|^2,
\]
hence we have,
\[
\frac{d}{dt} \left(\|\tilde{u}\|^2 + \|\tilde{v}\|^2 \right) + a_1\|\tilde{u}\|^2 + a_2\|\tilde{v}\|^2 \\
\leq \frac{3d_1^2}{a_1} \|Ay(\theta,\omega)\|^2 + \frac{3d_2^2}{a_2} \|Ay(\theta,\omega)\|^2 + \frac{3}{a_1} \|f_1\|^2 + \frac{3}{a_2} \|f_2\|^2 + \frac{3a_1^2}{a_1} \|y(\theta,\omega)\|^2 + \frac{3a_2^2}{a_2} \|y(\theta,\omega)\|^2 \\
\leq C_1 \|Ay(\theta,\omega)\|^2 + C_2 \|y(\theta,\omega)\|^2 + C_3 (\|f_1\|^2 + \|f_2\|^2) \\
\leq C_4 (\|y(\theta,\omega)\|^2 + \|Ay(\theta,\omega)\|^2 + \|f_1\|^2 + \|f_2\|^2 + \|f_3\|^2),
\]
where
\[
C_1 = \max \left\{ \frac{3d_1^2}{a_1}, \frac{3d_2^2}{a_2} \right\}, \quad C_2 = \max \left\{ \frac{3a_1^2}{a_1}, \frac{3a_2^2}{a_2} \right\}, \\
C_3 = \max \left\{ \frac{3}{a_1}, \frac{3}{a_2} \right\}, \quad C_4 = \max \{C_1, C_2, C_3\}.
\]
By Gronwall’s inequality in [8], it follows that
\[
\|\tilde{u}(t, \omega, \tilde{u}_0(\omega))\|^2 + \|\tilde{v}(t, \omega, \tilde{v}_0(\omega))\|^2 \\
\leq e^{-\min(a_1, a_2)t} \|\tilde{u}_0(\omega)\|^2 + \|\tilde{v}_0(\omega)\|^2 + \frac{C_4}{\min(a_1, a_2)} (\|f_1\|^2 + \|f_2\|^2) \\
+ C_4 \int_0^t e^{-\min(a_1, a_2)(t-s)} (\|y(\theta,\omega)\|^2 + \|Ay(\theta,\omega)\|^2) ds.
\]
Let \(c_1 = \min(a_1, a_2)\). Now that the random variable \(y(\theta,\omega)\) is tempered and continuous in \(t\). It follows from Proposition 4.3.3 in [9], there is a tempered function \(j(\omega) > 0\) that satisfies
\[
\|y(\theta,\omega)\|^2 + \|Ay(\theta,\omega)\|^2 \leq j(\omega) e^{c_1|t|}.
\]
Replacing \(\omega\) by \(\theta_{\omega}\) in (3.11), by (3.12), we get
\[
\|\tilde{u}(t, \theta_{\omega}, \tilde{u}_0(\theta_{\omega}))\|^2 + \|\tilde{v}(t, \theta_{\omega}, \tilde{v}_0(\theta_{\omega}))\|^2 \\
\leq e^{-c_1t} \|\tilde{u}_0(\theta_{\omega})\|^2 + \|\tilde{v}_0(\theta_{\omega})\|^2 + \frac{C_4}{c_1} (\|f_1\|^2 + \|f_2\|^2) \\
+ C_4 \int_0^t e^{-c_1(t-s)} (\|y(\theta_{\omega})\|^2 + \|Ay(\theta_{\omega})\|^2) ds \\
\leq e^{-c_1t} \|\tilde{u}_0(\theta_{\omega})\|^2 + \|\tilde{v}_0(\theta_{\omega})\|^2 + \frac{C_4}{c_1} (\|f_1\|^2 + \|f_2\|^2) \\
+ C_4 \int_0^t e^{-c_1\tau} (\|y(\theta_{\omega})\|^2 + \|Ay(\theta_{\omega})\|^2) d\tau \\
\leq e^{-c_1t} \|\tilde{u}_0(\theta_{\omega})\|^2 + \|\tilde{v}_0(\theta_{\omega})\|^2 + \frac{C_4}{c_1} (\|f_1\|^2 + \|f_2\|^2) + \frac{2c_4l(\omega)}{c_1},
\]
Define \(R^2(\omega) = 2[C_4(\|f_1\|^2 + \|f_2\|^2) + 2C_4l(\omega)]/c_1; \) \(\tau(\omega) \) is a tempered function, so \(R(\omega) \) is also tempered.

Define \(\tilde{J}(\omega) = \{(\tilde{u}, \tilde{v}) \in \iota^2 \times \iota^2, \|\tilde{u}\|^2 + \|\tilde{v}\|^2 \leq R^2(\omega)\}. \)

From Theorem 4.2 in [2], \(\tilde{J}(\omega) \) is an absorbing set for the random dynamical system \((\tilde{u}(t, \omega, \tilde{u}_0), \tilde{v}(t, \omega, \tilde{v}_0))\), i.e., \(\forall D \in \mathcal{D} \) and \(\forall \omega \in \Omega' \), there exists \(T_D(\omega) \) such that

\[
\Phi(t, \theta^{-t} \omega, D(\theta^{-t} \omega)) \subset \tilde{J}(\omega) \quad \text{for} \quad t \geq T_D(\omega).
\]

Let \(J(\omega) = \{(u, v) \in \iota^2 \times \iota^2, \|u\|^2 + \|v\|^2 \leq R^2(\omega)\}, \)

where

\[
R^2(\omega) = 2R^2(\omega) + 4\|y(\theta \omega)\|^2.
\]

since

\[
\psi(t, \omega, (u_0, v_0, z_0)) = \Phi(t, \omega, (u_0 - y(\omega), v_0 - y(\omega))) + (y(\theta \omega), y(\theta \omega)) = (\tilde{u}(t, \omega, u_0 - y(\omega)) + y(\theta \omega), \tilde{v}(t, \omega, v_0 - y(\omega)) + y(\theta \omega)),
\]

so \(J(\omega) \) is an absorbing random set for \(\psi(t, \omega) \) and \(J \in \mathcal{D} \). The proof of Lemma 4.1 is completed.

\(\square \)

Acknowledgement

The paper is supported by Shanghai Natural Science Foundation (16ZR1414000).

Competing Interests

The author has declared that no competing interests exist.

References

©2019 Hongyan; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
http://www.sdiarticle3.com/review-history/48970