Fuzzy Alexandrov Topologies Associated to Fuzzy Interval Orders

Gianni Bosi\(^1\), Chiaramaria Panozzo\(^2\) and Magalì Ernestine Zuanon\(^2\)

\(^1\)DEAMS, Università di Trieste, via Università 1, 34123 Trieste, Italy.
\(^2\)DEM, Università di Brescia, Contrada Santa Chiara 50, 25122 Brescia, Italy.

Authors’ contributions

This work was carried out in collaboration among all authors. Author GB proved the results. Author CP and Author MEZ wrote the introduction, provided the final version of the manuscript, and managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/ARJOM/2020/v16i1030227

Editor(s):

(1) Dr. Ruben Dario Ortiz Ortiz, Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Física y Matemáticas, Mexico.
(2) Dr. Nikolaos D. Bagis, Aristotle University of Thessaloniki, Greece.
(3) Dr. Andrej V. Plotnikov, Odessa State Academy of Civil Engineering and Architecture, Ukraine.

Reviewer(s):

(1) M. Mohamed Jeyavuthin, India.
(2) Arif Mehmood Khattak, Riphah International University, Pakistan.
(3) Muhammad Sajjad Ali Khan, Kohat University of Science and Technology, Pakistan.
(4) P. Karthik Sankar, G. Venkataswamy Naidu College, Manonmaniam Sundaranar University, India.
(5) P. Xavier, Karunya Institute of Technology and Sciences, India.

Complete Peer review History: http://www.sdiarticle4.com/review-history/60823

Received: 15 July 2020
Accepted: 22 September 2020

Original Research Article

Published: 30 September 2020

Abstract

We characterize the fuzzy \(T_0\) - Alexandrov topologies on a crisp set \(X\), which are associated to fuzzy interval orders \(R\) on \(X\). In this way, we generalize a well known result by Rabinovitch (1978), according to which a crisp partial order is a crisp interval order if and only if the family of all the strict upper sections of the partial order is nested.

Keywords: Fuzzy Alexandrov topology; fuzzy partial order; \(T_0\) separation axiom.

*Corresponding author: E-mail: gianni.bosi@deams.units.it;
1 Introduction

Separation axioms in fuzzy topological spaces were first introduced by [1], and then studied by [2]. In this paper, we are based on the definition of fuzzy Alexandrov topological space, which may be viewed as a generalization of the corresponding property concerning topological spaces (see [3]). According to such property, a topology \(\tau \) on a set \(X \) is said to be Alexandrov if it is closed under arbitrary intersections.

We show that there is a one-to-one correspondence between fuzzy interval orders on a nonempty set \(X \) and fuzzy \(T_0 \) - Alexandrov topologies on \(X \), with minimal bases \(\{ U_x \}_{x \in X} \) such that the corresponding family \(\{ U_x^* \}_{x \in X} \) of partial fuzzy subsets of \(X \) is nested. Here, for every \(x \in X \), \(U_x^* \) is the restriction of \(U_x \) to \(X \setminus \{ x \} \). In our characterization, the concept of a partial fuzzy set is crucial, in order to exactly recover the notion of strict upper sections of partial orders in the crisp case.

In this way, we generalize a well known result by [4], according to which a crisp partial order is a crisp interval order if and only if the family of all the strict upper sections of the partial order is nested (i.e., linearly ordered by set inclusion).

We recall that the concept of Alexandrov topology has been recently considered by [5] in connection to fuzzy approximation spaces (i.e., fuzzy related spaces) and rough sets, as well as by [6], who considered suitable topologies in order to recover upper semicontinuous Richter-Peleg multi-utility representation of nontotal preorders. Fuzzy approximating spaces (i.e., fuzzy related spaces) have been studied by [7].

2 Notation and Preliminaries

A fuzzy topology on a nonempty crisp set \(X \) is a collection of fuzzy subsets of \(X \) (i.e. functions from \(X \) into the unit interval \([0, 1] \)), which is closed under finite intersections (infima) and arbitrary unions (suprema) and which contains both \(X \) (i.e., the constant equal to one) and \(\emptyset \) (i.e., the constant equal to zero).

For later use, we recall that for two fuzzy subsets \(A, B : X \to [0, 1] \) of \(X \), \(A \subseteq B \) if and only if \(A(x) \leq B(x) \) for all \(x \in X \).

Let us now introduce the definitions of a partial fuzzy subset of \(X \), and inclusion of a partial fuzzy set into another. These concepts will be used in the fundamental Theorem 3.1 below.

Definition 2.1. A partial fuzzy subset of \(X \) is a partial mapping \(A : (X \supset) X' \to [0, 1] \), i.e., \(A \) is restricted to a set \(X' \subseteq X \). In this case, if \(x \in X \setminus X' \), then we shall write \(A(x) = 0 \).

For two partial fuzzy sets \(A, B : X \to [0, 1] \),

\[
A \subseteq B \Leftrightarrow A(x) \leq B(x) \quad \text{for every} \quad x \in X \quad \text{such that} \quad A(x) \neq \emptyset \quad \text{and} \quad B(x) \neq \emptyset.
\]

Therefore, when \(A, B \) are partial fuzzy subsets of \(X \), \(A \) is contained in \(B \) whenever \(A(x) \leq B(x) \) for every point \(x \) belonging to both the domains of \(A \) and \(B \).

Definition 2.2 ([8]). A family \(\{ A_i \}_{i \in I} \) of (partial) fuzzy subsets of \(X \) is said to be nested (or equivalently, linearly ordered by set inclusion) if, for all \(i, j \in I \), either \(A_i \subseteq A_j \) or \(A_j \subseteq A_i \).

Definition 2.3 ([9]). Let \(X \) be a nonempty set. A fuzzy point \(x_\alpha (x \in X \text{ and } \alpha \in [0, 1]) \) is a fuzzy subset of \(X \) such that \(x_\alpha (x) = \alpha \), and \(x_\alpha (z) = 0 \) for every \(z \in X, z \neq x \). \(x \) and \(\alpha \) are respectively called the support and value of the fuzzy point \(x_\alpha \). A fuzzy point \(x_\alpha \) is said to belong to a fuzzy subset \(A \) of \(X \) (\(x_\alpha \in A \)) if \(\alpha < A(x) \).
Definition 2.4 ([9]). Let \((X, \tau)\) be a fuzzy topological space. A subfamily \(B_{\alpha}\) of \(\tau\) is a local base of \(x\) if \(x_{\alpha} \in B\) for every \(B \in B_{\alpha}\) and if, whenever \(x_{\alpha} \in U, \ U \in \tau\), then there exists \(B \in B_{\alpha}\) such that \(x_{\alpha} \in B \subseteq U\). A subfamily \(B\) of \(\tau\) is a base for \(x\) if, for every \(U \in \tau\) and for every \(x_{\alpha} \in U\), there exists \(B \in B\) such that \(x_{\alpha} \in B \subseteq U\).

Definition 2.5 ([2]). A fuzzy topological space \((X, \tau)\) is said to be fuzzy \(T_{0}\) if, whenever \(x, y \in X\), \(x \neq y\), then there exists \(U \in \tau\) such that either \(U(x) = 1\), \(U(y) = 0\) or \(U(x) = 0\), \(U(y) = 1\).

Now let us introduce the definition of fuzzy Alexandrov topology, which is analogous to the corresponding notion concerning topological spaces.

Definition 2.6. ([5]) A fuzzy topological space \((X, \tau)\) is said to be fuzzy Alexandrov if \(\tau\) is closed under arbitrary intersections (infima).

We recall that the concept of Alexandrov topological space was introduced and studied by [3].

Proposition 2.1. If \((X, \tau)\) is a fuzzy Alexandrov topological space, then there exists a unique minimal base \(B\) of \(\tau\).

Proof. Define, for every \(x \in X\) and for every \(\alpha \in [0, 1]\),

\[
B^\alpha = \inf_{\{A_i \in B_{\alpha} \mid A_i \cap x \neq \emptyset\}} A_i.
\]

It is easily seen that \(B = \{B^\alpha : x \in X, \alpha \in [0, 1]\}\) is a base of \(\tau\). If \(x_{\alpha} \in U, \ U \in \tau\), then consider any real number \(\alpha'\) such that \(\alpha < \alpha' < U(x)\). Hence \(x_{\alpha} \in B^\alpha \subseteq U\). It is straightforward to prove that \(B\) is the unique minimal base of \(\tau\). So the proof is complete.

3 **Fuzzy Partial Orders and Fuzzy Interval Orders**

The fundamental concept of a fuzzy binary relation was introduced and studied by Zadeh (see e.g. [10]). In this section we first recall the definition of a fuzzy partial order, and then investigate the relationship between fuzzy partial orders (in particular, interval orders) and fuzzy \(T_0\) - Alexandrov topologies.

Definition 3.1 ([10]). Let \(R\) be a fuzzy binary relation on a nonempty set \(X\) (i.e. \(R : X \times X \to [0, 1]\)). \(R\) is said to be a fuzzy partial order if it is irreflexive (i.e. \(R(x, x) = 0\) for every \(x \in X\)) and min-transitive (i.e. \(R(x, z) \geq \min\{R(x, y), R(y, z)\}\) for every \(x, y, z \in X\)).

Remark 3.1. If \(R : X \times X \to [0, 1]\) is an irreflexive binary relation on a crisp set \(X\), then, for every pair \((x, y) \in X \times X\), \(R(x, y)\) is interpreted as the “degree up to which \(x\) is less preferred than \(y\)”. It is easily seen that a fuzzy partial order is perfectly antisymmetric, in the sense that

\[
R(x, y) > 0 \Rightarrow R(y, x) = 0\text{ for every }x, y \in X.
\]

We recall that there is a one-to-one correspondence between \(T_0\) - Alexandrov topologies on a nonempty set \(X\) and crisp partial orders on \(X\) (see e.g. [11]). If \(R\) is a crisp partial order on \(X\) (i.e. \(R : X \times X \to \{0, 1\}\)), then define, for every \(x \in X\),

\[
U_x = \{x\} \cup \{z \in X : R(x, z) = 1\}.
\]

We can associate to \(R\) the \(T_0\) - Alexandrov topology \(\tau_R\) with minimal base \((U_x)_{x \in X}\). For a fixed nonempty set \(X\), the function \(\phi : R \to \phi(R) = \tau_R\) is a bijection from the set of all the crisp partial orders on \(X\) into the set of all the \(T_0\) - Alexandrov topologies on \(X\).
Proposition 3.1. There is a one-to-one correspondence between fuzzy partial orders on a nonempty set X and fuzzy T_0-Alexandrov topologies on X.

Proof. Let X be a nonempty set, and consider a fuzzy T_0-Alexandrov topology τ on X. For every $x \in X$, let

$$U_x = \inf_{A_i \in \mathcal{A}, A_i(x) > 0} A_i.$$

Then consider the fuzzy binary relation R on X defined as follows:

$$R(x, y) = \begin{cases} U_x(y) & \text{if } x \neq y \\ 0 & \text{if } x = y. \end{cases}$$

Let us prove that R is a fuzzy partial order on X. It is clear that R is irreflexive. To prove that R is min-transitive, consider $x, y, z \in X$, and assume that $R(x, y)$ is positive. Hence $R(x, y) = U_x(y)$, and therefore $U_x \supset U_y$ from the definition above. Since $U_x(z) \geq U_y(z)$, it is clear that $R(x, z) \geq \min\{R(x, y), R(y, z)\}$.

Conversely, let R be a fuzzy partial order on X, and define, for every $x \in X$, the following fuzzy subset U_x of X:

$$U_x(y) = \begin{cases} R(x, y) & \text{if } x \neq y \\ 1 & \text{if } x = y. \end{cases}$$

Denote by τ_R the fuzzy Alexandrov topology on X with $(U_x)_{x \in X}$ as a minimal base. Using the fact that R is perfectly antisymmetric, it is easy to check that (X, τ_R) is a fuzzy T_0 topological space. If $x \neq y$, then either $U_x(y) = 0$ or $U_y(x) > 0$. In the first case there is nothing to prove since we have $U_x(x) = 1$. In the second case it is $U_y(x) = 0$ since R is perfectly antisymmetric. Moreover, $U_y(x) = 1$ from the definition above. Finally, if R_1 and R_2 are two different partial orders on X, then the T_0 Alexandrov topologies τ_{R_1} and τ_{R_2} associated with R_1 and R_2, respectively, are also different. So the proof is complete.

In the sequel, we shall denote by τ_R the fuzzy T_0-Alexandrov topology on a crisp set X, with a minimal base $(U_x)_{x \in X}$ (as defined in equation (3.1)), characterizing a fuzzy partial order R on X.

Definition 3.2 ([12]). A fuzzy binary relation R on a crisp set X is said to be a fuzzy interval order, if the following conditions are verified:

(i) R is irreflexive;

(ii) for every $x, y, z, w \in X$,

$$\max(R(x, w), R(y, z)) \geq \min(R(x, z), R(y, w)).$$

Theorem 3.1. Let R be a fuzzy partial order on a set X. Then the following conditions are equivalent:

(i) R is a fuzzy interval order;

(ii) the fuzzy T_0-Alexandrov topology τ_R on X characterizing R has a unique minimal base $(U_x)_{x \in X}$ such that the family $(U_x^*)_{x \in X}$ of partial fuzzy subsets of X is nested, where, for every $x \in X$,

$$U_x^*(y) = \begin{cases} R(x, y) & \text{if } x \neq y \\ 0 & \text{if } x = y. \end{cases}$$

Proof. (i) \Rightarrow (ii). First observe that, from the proof of Proposition 3.1, the family $(U_x)_{x \in X}$ defined by equation (3.1) is the unique minimal base of the fuzzy T_0-Alexandrov topology τ_R on X characterizing R. By contraposition, assume that the family $(U_x^*)_{x \in X}$ $(x \in X)$ is not nested. This
is equivalent to the assertion that there exist two points \(x, y \in X\) such that \((U^*_y \not\subseteq U^*_x)\) and \((U^*_y \not\subseteq U^*_z)\). Therefore, there exist \(z, w \in X\) such that \(z, w \neq x, z, w \neq y\),

\[
(U^*_z(z) = R(x, z) > R(y, z) = U^*_y(z)) \quad \text{and} \quad (U^*_w(w) = R(y, w) > R(x, w) = U^*_x(w)).
\]

Hence, \(\max(R(x, w), R(y, z)) < \min(R(x, z), R(y, w))\), and \(R\) is not an interval order.

(ii) \(\Rightarrow\) (i). We have to show that, for every \(x, y, z, w \in X\),

\[
\max(R(x, w), R(y, z)) \geq \min(R(x, z), R(y, w)).
\]

Without loss of generality, we can assume that \(z, w \neq x, z, w \neq y\). Consider that

\[
\max(R(x, w), R(y, z)) = \max(U^*_z(w), U^*_y(z)).
\]

Since the family \(\{U^*_x\}_{x \in X}\) of partial fuzzy subsets of \(X\) is nested, two cases may occur:

1. \(U^*_z \subseteq U^*_x\): in this case, we have that \(U^*_y(z) \geq U^*_z(z)\);

2. \(U^*_y \subseteq U^*_x\): in this case, we have that \(U^*_y(w) \geq U^*_y(w)\).

Therefore, in both cases it happens that

\[
\max(R(x, w), R(y, z)) = \max(U^*_z(w), U^*_y(z)) \geq \min(U^*_z(z), U^*_y(w)) = \min(R(x, z), R(y, w)).
\]

Hence, \(R\) is an interval order. This consideration completes the proof. \(\square\)

Remark 3.2. The previous Theorem 3.1 generalizes to the fuzzy case Theorem 2 in [4], according to which a crisp partial \(R = \prec\) on a set \(X\) is an interval order (i.e., \(\prec\) is irreflexive and, for all \(x, y, z, w \in X\), \((x \prec z) \text{ and } (y \prec w) \Rightarrow (x \prec w) \text{ or } (y \prec z))\) if and only if the family \(\{U_x = \{z \in X : x \prec z\}\}_{x \in X}\) of all the upper sections of the partial order is nested.

Example 3.2. If \(X\) is a finite set, \(X = \{x_1, ..., x_n\}\), and \(R\) is a fuzzy binary relation on \(X\), then \(R\) can be described by a matrix in the following way:

\[
\begin{array}{cccc}
 x_1 & R(x_1, x_1) & R(x_1, x_2) & \cdots & R(x_1, x_n) \\
 x_2 & R(x_2, x_1) & R(x_2, x_2) & \cdots & R(x_2, x_n) \\
 x_3 & R(x_3, x_1) & R(x_3, x_2) & \cdots & R(x_3, x_n) \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 x_n & R(x_n, x_1) & R(x_n, x_2) & \cdots & R(x_n, x_n) \\
\end{array}
\]

Consider the fuzzy binary relation \(R\) on a five elements set \(X = \{x_1, x_2, ..., x_5\}\) described by the matrix

\[
\begin{array}{ccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 \\
 x_1 & 0 & \lambda & \lambda & \lambda \\
 x_2 & 0 & 0 & 0 & \lambda \\
 x_3 & 0 & 1 & 0 & \lambda \\
 x_4 & 0 & 1 & 0 & \lambda \\
 x_5 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Define \(U^*_i = U^*_i\) for \(i \in \{1, ..., 5\}\), where we refer to the general definition of the partial fuzzy subsets \(U^*_x\) contained in equation (3.1) of Theorem 3.1. Then we have that \(U^*_2 \subseteq U^*_3 \subseteq U^*_1 \subseteq U^*_5 \subseteq U^*_4\). Since the family \(\{U^*_i\}_{i \in \{1, ..., 5\}}\) is nested, we have that \(R\) is a fuzzy interval order on \(X\).
4 Conclusions

In this paper we have presented a simple axiomatization of a fuzzy interval order R on a crisp set X in terms of a property of the characterizing fuzzy T_0 - Alexandrov topology, according to which the family of all the partial fuzzy subsets of X representing the strict upper sections of R is nested. Our intention is to apply in the future this sort of arguments to fuzzy partial semiorders and fuzzy semiorders, in order to obtain characterizations extending the corresponding ones concerning the crisp cases, as appearing in [11].

Competing Interests

Authors have declared that no competing interests exist.

References

© 2020 Bosi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.