Existence of Nonoscillation Solutions of Higher-Order Nonlinear Neutral Differential Equations

Zhao Yu-Ping1 and Fu Hua2

1College of Mathematics and Statistics, Qinghai Nationalities University, Xining, Qinghai 810007, People’s Republic of China.
2Fujian Police College, Fuzhou Fujian, 350007, People’s Republic of China.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/ARJOM/2020/v16i1030231

Editor(s): (1) Dr. Krasimir Yankov Yordzhev, South-West University, Bulgaria.

Reviewers: (1) S. N. Kumar, APJKTU, India.
(2) Fawziah Mohammad Mohammad Al-saar, Amran University, Yemen.

Complete Peer review History: http://www.sdiarticle4.com/review-history/62477

Received: 24 August 2020
Accepted: 29 October 2020
Published: 11 November 2020

Short Research Article

Abstract

In this paper, we consider the following higher-order nonlinear neutral differential equations:

$$\frac{d^n}{dt^n}\left[x(t) + cx(t - \tau)\right] + (-1)^{n+1}\left[P(t)f_1(x(t - \sigma)) - Q(t)f_2(x(t - \delta))\right] = 0, \quad t \geq t_0$$

where $\tau, \sigma, \delta \in R^+$, $c \in R$, $c \neq \pm 1$, and $P(t), Q(t) \in C([t_0, \infty), R^+)$, $f_1(u) \in C(R, R)$, $f_2(u) \geq 0$. We obtain the results which are some sufficient conditions for existence of nonoscillation solutions, special case of the equation has also been studied.

Keywords: Higher-order; differential equation; nonoscillation solutions; existence.

2010 Mathematics Subject Classification: 34K10, 34K11.

*Corresponding author: E-mail: 234880202@qq.com;
1 Introduction

In this paper, we shall consider existence of nonoscillation solution of higher-order nonlinear neutral differential equations

\[
\frac{d^n}{dt^n}[x(t) + cx(t - \tau)] + (-1)^{n+1}[P(t)f_1(x(t - \sigma)) - Q(t)f_2(x(t - \delta))] = 0, \quad t \geq t_0
\]

(1.1)

where \(\tau, \sigma, \delta \in R^+, c \in R, c \neq \pm 1\), and \(P(t), Q(t) \in C([t_0, \infty), R^+), R^+ = (0, +\infty)\). \(f_i(u) \in C(R, R), u f_i(u) > 0\). If \(u > 0\), then \(\exists N_i, \text{ st. } 0 < N_i \leq u, \mid f_i(u) - f_i(v) \mid \leq L_i\mid u - v \mid, i = 1, 2\).

Let \(\mu = \{\tau, \sigma, \delta\}\). By a solution of equation (1.1), we mean a continuously function \(x(t)\) such that equation (1.1) is satisfied for \(t \geq t_0\). By a nonoscillation solution of equation (1.1), we mean a nonoscillation solution of equation (1.1). If \(x(t) + cx(t - \tau)\) is continuously differentiable on \([t_1, \infty)\) and such that equation (1.1) is satisfied for \(t \geq t_1\).

Recently, more and more people are interested in nonoscillatory criteria of differential equations, we refer the reader to [1 – 11], the differential equation in [1]

\[
\frac{d^n}{dt^n}[x(t) + cx(t - \tau)] + (-1)^{n+1}[P(t)x(t - \sigma) - Q(t)x(t - \delta)] = 0, \quad t \geq t_0
\]

studied nonoscillation solution for a family of higher-order linear neutral differential equations with positive and negative coefficients. Our principal goal in this paper is to derive existence of nonoscillation solutions for nonlinear equation (1.1).

2 Existence Theorems

Theorem 1. Assume that \(0 < c < 1\) and\n
\[
\int_{t_0}^{\infty} s^{n-1} P(s) ds < \infty, \quad \int_{t_0}^{\infty} s^{n-1} Q(s) ds < \infty.
\]

(2.1)

Further, assume that there exists a constant \(\alpha > \frac{1}{1+c}\) and a sufficiently large \(t_1 \geq t_0\) such that

\[
P(t) \geq \alpha Q(t), \quad \text{for } t \geq t_1
\]

(2.2)

Then (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.2), there exists a \(t_1\) sufficiently large such that

\[
c + \frac{1}{(n-1)!} \int_{t_1}^{\infty} (s - t)^{n-1}(L_1 P(s) + L_2 Q(s)) ds \leq \theta_1 < 1, \quad \text{for } t \geq t_1
\]

(2.3)

where \(\theta_1\) is a constant, and

\[
0 \leq \frac{1}{(n-1)!} \int_{t_1}^{\infty} (s - t)^{n-1}(\alpha M P(s) - L_2 Q(s)) ds \leq c - 1 - \alpha M, \quad \text{for } t \geq t_1
\]

(2.4)

\[
0 \leq \frac{1}{(n-1)!} \int_{t_1}^{\infty} (s - t)^{n-1} Q(s) ds \leq \frac{1 - c - \alpha M - c M}{\alpha M}, \quad \text{for } t \geq t_1
\]

(2.5)

hold, where \(M\) is positive constant such that

\[
\frac{1 - c}{\alpha} \leq M \leq \frac{1 - c}{c(1 + \alpha)}
\]

(2.6)

holds.

Let \(X\) be the set of all continuous and bounded functions on \([t_0, \infty)\) with the norm \(\| x \| = \text{sup}_{t \geq t_0}|x(t)|\); we define a closed bounded subset \(\Omega\) of \(X\) as follows:

\[
\Omega = \{x \in X : c M \leq x(t) \leq \alpha M, t \geq t_0\}
\]

73
Define an operator $S : \Omega \to X$ as follows:

$$Sx(t) = \begin{cases} 1 - c - cx(t - \tau) + \frac{1}{(n-1)!} \int_0^t (s - t)^{n-1} (P(s)f_1(x(s - \delta)) - Q(s)f_2(x(s - \sigma)))ds, & t \geq t_1, \\
1 - c - cx(t - \tau) + \frac{1}{(n-1)!} \int_t^\infty (s - t)^{n-1} (P(s)f_1(x(s - \delta)) - Q(s)f_2(x(s - \sigma)))ds, & t_0 \leq t \leq t_1. \end{cases}$$

We shall show that $S\Omega \subset \Omega$. In fact, for every $x \in \Omega$, and $t \geq t_1$, using (2.4) and (2.6) we get

$$Sx(t) = 1 - c - cx(t - \tau) + \frac{1}{(n-1)!} \int_0^t (s - t)^{n-1} (P(s)f_1(x(s - \delta)) - Q(s)f_2(x(s - \sigma)))ds$$

$$\leq 1 - c + \frac{1}{(n-1)!} \int_t^\infty (s - t)^{n-1} (\alpha MP(s) - L_2 Q(s))ds$$

$$\leq \alpha M$$

Furthermore, in view of (2.5) and (2.6) we have

$$Sx(t) = 1 - c - cx(t - \tau) + \frac{1}{(n-1)!} \int_t^\infty (s - t)^{n-1} (P(s)f_1(x(s - \delta)) - Q(s)f_2(x(s - \sigma)))ds$$

$$\geq 1 - c - \alpha M - \frac{M \alpha}{(n-1)!} \int_0^t (s - t)^{n-1} Q(s)ds$$

$$\geq cM$$

Thus, we proved that $S\Omega \subset \Omega$.

Now we shall show that operator S is a contraction operator on Ω.

In fact, for $x, y \in \Omega$ and $t > t_1$, we have

$$|Sx(t) - Sy(t)| \leq c|x(t - \tau) - y(t - \tau)| + \frac{1}{(n-1)!} \int_t^\infty (s - t)^{n-1} P(s)|f_1(x(s - \sigma)) - f_1(y(s - \sigma))|ds$$

$$+ \frac{1}{(n-1)!} \int_t^\infty (s - t)^{n-1} Q(s)|f_2(x(s - \delta)) - f_2(y(s - \delta))|ds$$

$$\leq [c + \frac{1}{(n-1)!} \int_t^\infty (s - t)^{n-1} (L_1 P(s) + L_2 Q(s))ds] \| x - y \|$$

$$\leq \theta_1 \| x - y \|$$

This implies that

$$\| Sx - Sy \| \leq \theta_1 \| x - y \|$$

where in view of (2.3), $\theta_1 < 1$, which proves that S is a contraction operator on Ω. Therefore S has a unique fixed point x in Ω, which is obviously a bounded positive solution of equation (1.1). This completes the proof of Theorem 1.

Theorem 2. Assume that $1 < c < +\infty$ and that (2.1) holds. Further, assume that there exists a constant $\gamma > \frac{c}{c-1}$ and a sufficiently large $t_1 \geq t_0$ such that

$$P(t) \geq \gamma Q(t), \quad \text{for } t \geq t_1$$

Then (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.7), there exists a t_1, sufficiently large such that

$$\frac{1}{c}[1 + \frac{1}{(n-1)!} \int_{t+\tau}^\infty (s - t - \tau)^{n-1} (L_1 P(s) + L_2 Q(s))ds] \leq \theta_2 < 1, \quad \text{for } t \geq t_1$$

where θ_2 is a constant, and

$$0 \geq \frac{1}{(n-1)!} \int_{t+\tau}^\infty (s - t - \tau)^{n-1} (\gamma M_1 P(s) - L_2 Q(s))ds \leq 1 - c + c\gamma M_1, \quad \text{for } t \geq t_1$$
Define an operator holds. Let \(X \) holds, where \(M \) is positive constant such that
\[
\frac{c-1}{\gamma c} < M < \frac{c-1}{1+\gamma} \tag{2.11}
\]
holds. Let \(X \) be the set of all continuous and bounded functions on \([t_0, \infty)\) with the norm \(\| x \| = \sup_{t \geq t_0} |x(t)| \), we define a closed bounded subset \(\Omega \) of \(X \) as follows
\[
\Omega = \left\{ x \in X : \frac{M_1}{c} \leq x(t) \leq \gamma M_1, t \geq t_0 \right\}
\]
Define an operator \(S : \Omega \to X \) as follows
\[
S(x) = \begin{cases}
1 - \frac{t}{c} - \frac{1}{c(n-1)!} \int_{t+\tau}^{\infty} (s-t-\tau)^n (P(s)f_1(x(s-\delta)) - Q(s)f_2(x(s-\sigma)))ds & t \geq t_1, \\
\frac{M_1}{c} x(t) & t < t_1.
\end{cases}
\]
We shall show that \(\Omega \subset \Omega \). In fact, for every \(x \in \Omega \), and \(t \geq t_1 \), using (2.9) and (2.11) we get
\[
S(x) = 1 - \frac{t}{c} - \frac{1}{c(n-1)!} \int_{t+\tau}^{\infty} (s-t-\tau)^n (P(s)f_1(x(s-\delta)) - Q(s)f_2(x(s-\sigma)))ds \\
\leq 1 - \frac{t}{c} + \frac{1}{c(n-1)!} \int_{t+\tau}^{\infty} (s-t-\tau)^n \gamma M_1 P(s) - L_2 Q(s)ds \\
\leq \gamma M_1
\]
Furthermore, in view of (2.10) and (2.11) we have
\[
S(x) = 1 - \frac{t}{c} - \frac{1}{c(n-1)!} \int_{t+\tau}^{\infty} (s-t-\tau)^n \gamma M_1 P(s) - L_2 Q(s)ds \\
\geq \gamma M_1 \\
\geq \frac{M_1}{c}
\]
Thus, we proved that \(\Omega \subset \Omega \). Now we shall show that operator \(S \) is a contraction operator on \(\Omega \). In fact, for \(x, y \in \Omega \) and \(t > t_1 \), we have
\[
|S(x) - S(y)| \leq \frac{1}{c} |x(t) - y(t) + \gamma (t+\tau)| + \frac{1}{c(n-1)!} \int_{t+\tau}^{\infty} (s-t-\tau)^n p(s)(f_1(x(s-\sigma)) - f_1(y(s-\sigma)))ds \\
+ \frac{1}{c(n-1)!} \int_{t+\tau}^{\infty} (s-t-\tau)^n Q(s)f_2(x(s-\delta)) - f_2(y(s-\delta)))ds \\
\leq \frac{1}{c} + \frac{1}{c(n-1)!} \int_{t+\tau}^{\infty} (s-t-\tau)^n (L_1 p(s) + L_2 Q(s))ds \| x - y \| \\
\leq \theta_2 \| x - y \|
\]
This implies that
\[
\| Sx - Sy \| \leq \theta_2 \| x - y \|
\]
where in view of (2.8), \(\theta_2 < 1 \), which proves that \(S \) is a contraction operator on \(\Omega \). Therefore \(S \) has a unique fixed point \(x \) in \(\Omega \), which is obviously a bounded positive solution of equation (1.1). This completes the proof of Theorem 2.

Theorem 3. Assume that \(-1 < c < 0\) and that (2.1) holds. Further, assume that there exists a constant \(\beta > 1 \) and a sufficiently large \(t_1 \geq t_0 \) such that
\[
P(t) \geq \beta Q(t), \quad \text{for } t \geq t_1 \tag{2.12}
\]
Then (1.1) has a bounded nonoscillatory solution.

Proof. By (2.1) and (2.12), there exists a t_1 sufficiently large such that

$$-c + \frac{1}{(n-1)!} \int_t^{\infty} (s-t)^{n-1}(L_1p(s) + L_2Q(s))dsdu \leq \theta_1 < 1, \text{ for } t \geq t_1$$

(2.13)

where θ_1 is a constant, and

$$0 \leq \frac{1}{(n-1)!} \int_t^{\infty} (s-t)^{n-1}(\beta M_2 P(s) - L_2Q(s))dsdu \leq (c+1)(\beta M_2 - 1), \text{ for } t \geq t_1$$

(2.14)

hold, and

$$\frac{1}{(n-1)!} \int_t^{\infty} (s-t)^{n-1}Q(s)ds < \frac{(1+c)(1-M_2)}{\beta M_2}$$

(2.15)

where M_2 is positive constant such that

$$\frac{1}{\beta} < M_2 < 1$$

(2.16)

holds. Let X be the set of all continuous and bounded functions on $[t_0, \infty)$ with the norm $\|x\| = \sup_{t \geq t_0}|x(t)|$, we define a closed bounded subset Ω of X as follows

$$\Omega = \{x \in X : M_2 \leq x(t) \leq \beta M_2, t \geq t_0\}$$

Define an operator $S : \Omega \to X$ as follows

$$Sx(t) = \begin{cases} 1 + c - cx(t-\tau) + \frac{1}{(n-1)!} \int_t^{\infty} (s-t)^{n-1}(P(s)f_1(x(s-\delta)) - Q(s)f_2(x(s-\sigma)))ds & t \geq t_1, \\ Sx(t_1) & t_0 \leq t \leq t_1. \end{cases}$$

We shall show that $S\Omega \subset \Omega$. In fact, for every $x \in \Omega$, and $t \geq t_1$, using (2.12) and (2.14) we get

$$Sx(t) = 1 + c - cx(t-\tau) + \frac{1}{(n-1)!} \int_t^{\infty} (s-t)^{n-1}(P(s)f_1(x(s-\delta)) - Q(s)f_2(x(s-\sigma)))ds$$

$$\leq 1 + c - c\beta M_2 + \frac{1}{(n-1)!} \int_t^{\infty} (s-t)^{n-1}(\beta M_2 P(s) - L_2Q(s))ds$$

$$\leq 1 + c - c\beta M_2 + (c+1)(\beta M_2 - 1)$$

$$= \beta M_2$$

Furthermore, in view of (2.15) we have

$$Sx(t) = 1 + c - cx(t-\tau) + \frac{1}{(n-1)!} \int_t^{\infty} (s-t)^{n-1}(P(s)f_1(x(s-\delta)) - Q(s)f_2(x(s-\sigma)))ds$$

$$\geq 1 + c - c\beta M_2 - \frac{1}{(n-1)!} \int_t^{\infty} (s-t)^{n-1}\beta M_2 Q(s)ds$$

$$\geq 1 + c - c\beta M_2 - (1+c)(1-M_2)$$

$$= \beta M_2$$

Thus, we proved that $S\Omega \subset \Omega$. Now we shall show that operator S is a contraction operator on Ω. In fact, for $x, y \in \Omega$ and $t > t_1$, we have

$$|Sx(t) - Sy(t)| \leq c|z(t-\tau) - y(t-\tau)| + \frac{1}{(n-1)!} \int_t^{\infty} (s-t)^{n-1}p(s)|f_1(x(s-\sigma)) - f_1(y(s-\sigma))|ds$$

$$+ \frac{1}{(n-1)!} \int_t^{\infty} (s-t)^{n-1}Q(s)|f_2(x(s-\delta)) - f_2(y(s-\delta))|ds$$

$$\leq c + \frac{1}{(n-1)!} \int_t^{\infty} (s-t)^{n-1}(L_1p(s) + L_2Q(s))ds \|x - y\|$$

$$\leq \theta_3 \|x - y\|$$
This implies that
\[\| Sx - Sy \| \leq \theta_3 \| x - y \| \]
where in view of (2.13), \(\theta_3 < 1 \), which proves that \(S \) is a contraction operator on \(\Omega \). Therefore \(S \) has a unique fixed point \(x \) in \(\Omega \), which is obviously a bounded positive solution of equation (1.1). This completes the proof of Theorem 3.

Theorem 4. Assume that \(-\infty < c < -1\) and that (2.1) holds. Further, assume that there exists a constant \(h > 1 \) and a sufficiently large \(t_1 \geq t_0 \) such that
\[P(t) \geq hQ(t), \quad \text{for } t \geq t_1 \tag{2.17} \]
Then (1.1) has a bounded nonoscillatory solution.

Proof: The proof is similar to Theorem 2, we omitted.

By Theorems 1-4, we have the following result

Corollary 1. Assume that \(c \in \mathbb{R}; c \neq \pm 1 \) and
\[\int_{t_0}^{\infty} s^{n-1} P(s) ds < \infty. \]
then the neutral differential equation
\[\frac{d^n}{dt^n}[x(t) + cx(t - \tau)] + (-1)^{n+1} [P(t)f_1(x(t - \sigma))] = 0, \quad t \geq t_0 \tag{2.18} \]
has a bounded nonoscillatory solution.

3 Conclusion

In this paper, we have introduced existence of nonoscillatory solutions of differential equations of (1.1), the obtained results are easily applicable. If \(c = 1 \) or \(c = -1 \), we can study existence of nonoscillatory solutions of differential equations of (1.1) in the future work.

Acknowledgments

This work was supported social science planning support project of Qinghai Province (Nos. 16021).

Competing Interests

Authors have declared that no competing interests exist.

References

© 2020 Yu-Ping and Hua: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) http://www.sdiarticle4.com/review-history/62477